The Use of PANC-1 Spheroids for Testing Antitumor Drugs In Vitro and Creating a Tumor Model In Vivo

S. Sh. Karshieva1, S. P. Kudan2, Y. D. Khesuani3, V. S. Pokrovsky4, V. A. Mironov4,5, and E. V. Koudan1.*

1Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow, 115409 Russia
2Blokhn National Medical Research Center of Oncology of the Ministry of Health of Russian Federation, Moscow, 115478 Russia
3Pablo Neruda School №1568, Moscow, 127221 Russia
4Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991 Russia

*E-mail: koudan1980@gmail.com

Recently, spheroids have attracted widespread attention of researchers as 3D models for drug testing. One of the key features of spheroids is that they can be composed of one or several types of cells. There is a hypothesis that the use of heterospheroids from different types of cells in testing anticancer drugs can better reproduce the 3D architecture.
of the tumor and, as a consequence, increase the predictiveness of the research. To verify this hypothesis, in this study, we tested the activity of eight anticancer drugs on homo-spheroids consisting of pancreatic cancer cells (PANC-1) and heterospheroids consisting of a triple co-culture of PANC-1, primary human fibroblasts and endothelial cells (HUVEC). It was found that the use of heterospheroids from several types of cells, which more accurately reflect the heterogeneous tumor microenvironment, does not lead to a noticeable change in the activity of the drugs. Also, we subcutaneously transplanted spheroids from PANC-1 to immunodeficient mice. Our data demonstrated that the obtained tumor model reproduce a more aggressive phenotype of human pancreatic cancer compared to cell transplantation in suspension.

Keywords: spheroids, antitumor drugs, antiproliferative activity, cytotoxicity, tumor model