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The aim of the study was to examine the effect of intravenous transplantation of human mesenchymal stem cells
(hMSC) on the function of the KATP channels of pial arteries at different time points during post-ischemic period.
Using a device for intravital visualization of pial vessels, we checked the reaction of the pial arteries to the application
of KATP channels blocker glibenclamide (GB), KATP channels activator pinacidil (PI), acetylcholine (ACh) and ace-
tylcholine combined with GB (ACh/GB) on the 7, 14, and 21 day after cerebral ischemia/reperfusion and intrave-
nous hMSC transplantation. Two to five time less arteries reacted by contraction to GB application and one-and-a-
half times less arteries dilated after PI application on the 7th day after I/R than in sham group. hMSC transplantation
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carried out on the day of I/R had no effect on the KATP channels functions 7 days after I/R: the contraction reaction
to GB and dilation reaction to PI were the same as in I/R group. Fourteen days after I/R the number of arteries con-
stricted in response to GB were 1.5–2 times less than in sham group, and number of arteries dilated in response to
PI were 2–2.5 times less. At the same time after I/R in the cell therapy group the number of arteries constricted to
GB and dilated to PI almost fully matched such in the sham group. The functional state of KATP channels following
I/R was assessed by comparing the dilatory response of pial arteries to the application of ACh and ACh in combina-
tion with KATP channels blocker glibenclamide. GB blocked dilatory reaction to ACh in sham animals. Simultaneous
application of ACh and GB induced an increase in dilated arteries 7–14 days after I/R, and twenty-one days after
I/R we observed no difference in the number of dilated vessels in response to application of ACh/GB or ACh alone.
After MSC application, GB blocked dilation of pial arteries following ACh application in the same way as in sham
animals, except for the first 7 days. It may be concluded that cerebral cortex I/R alleviated KATP channels contribu-
tion to the maintenance of the normal tone of pial vessels. These changes retained during 14 days after ischemia. Si-
multaneously, between 7 and 14 days after I/R the role of KATP channels in dilation reaction of pial arteries to ACh
decreased: by the 21st day the channels take almost no part in dilatory response. Intravenous MSC transplantation
on the day of cerebral I/R induced earlier restoration of KATP channels participation in keeping the normal tone of
pial vessels (14 days) and ACh-mediated dilation of pial arteries.
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