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Poly(ε-caprolactone) (PCL) is widely applied for the construction of small-diameter tissue-engineered vascular
grafts (TEVGs) due to its biomechanical properties, slow degradation, and good biocompatibility. In the present
study the TEVG based on a tubular scaffold seeded with smooth muscle aortic cells (SMCs) in a rat abdominal aorta
replacement model was tested. Polyester tubular scaffolds were generated by thermally induced phase separation and
seeded with rat SMCs. To track the implanted SMCs in vivo, cells were labeled with superparamagnetic iron oxide
nanoparticles (SPIONs). Histological evaluation of the migration of autologous endothelial cells (ECs) and forma-
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tion of the endothelial lining was performed 4, 8, and 12 weeks after graft interposition. TEVG demonstrated a high
patency rate without any complications at the end of the 12-week period. The migration of ECs into the lumen of
the implanted TEVG and formation of the cell monolayer were already present at 4 weeks, as confirmed by histo-
logical analysis. The architecture of both neointima and neoadventitia were similar to those of the native vessel. SPI-
ON-labeled SMCs were detected throughout the TEVG, indicating the role of these cells in the endothelization of
scaffolds. The SMC-seeded scaffolds demonstrated improved patency and biointegrative properties when compared
to the acellular grafts.

Keywords: smooth muscle and endothelial cells, polycaprolactone, tubular scaffold, small diameter vessel, super-
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