УДК 57.085.23

МОРФОФУНЦИОНАЛЬНАЯ РЕАКЦИЯ Т-ЛИМФОЦИТОВ ПРИ *IN VITRO* КОНТАКТЕ С КАЛЬЦИЙФОСФАТНЫМ ПОКРЫТИЕМ В ПРИСУТСТВИИ Т-КЛЕТОЧНОГО АКТИВАТОРА

© 2020 г. Л. С. Литвинова^{1, *}, Е. С. Мелащенко¹, О. Г. Хазиахматова¹, К. А. Юрова¹, Ю. П. Шаркеев^{2, 3}, Е. Г. Комарова³, М. Б. Седельникова³, Н. М. Тодосенко¹, И. А. Хлусов^{1, 4, 5}

¹Центр иммунологии и клеточных биотехнологий Балтийского федерального университета им. И. Канта, Калининград, 236041 Россия

²Исследовательская школа физики высокоэнергетических процессов Томского политехнического университета, Томск, 634050 Россия

³Лаборатория физики наноструктурных биокомпозитов Института физики прочности и материаловедения СО РАН, Томск, 634055 Россия

⁴Кафедра морфологии и общей патологии Сибирского государственного медицинского университета, Томск, 634050 Россия

⁵Исследовательская школа химических и биомедицинских технологий Томского политехнического университета, Томск, 634050 Россия

> *E-mail: larisalitvinova@yandex.ru Поступила в редакцию 17.04.2020 г. После доработки 24.04.2020 г. Принята к публикации 28.04.2020 г.

Изучена морфофункциональная активность Т-лимфоцитов при *in vitro* контакте с КФ-покрытием в присутствии частиц с антителами к антигенам CD2, CD3 и CD28. Пластины из титана BT1-0 ($10 \times 10 \times 1$ мм³) с двусторонним микродуговым шероховатым (индекс $R_a = 2-5$ мкм) К Φ -покрытием использовали в качестве модельных образцов минерального матрикса костной ткани. Магнитные частицы (MACSiBead™ T-Cell Activation/Expansion Kit human) с антителами к антигенам CD2, CD3 и CD28 применяли как Т-клеточный активатор (ТКА), симулирующий сигналы антигенпрезентирующих клеток (АПК). Мононуклеарные клетки (МНК), выделенные из крови человека (98.8% клеток CD45CD3⁺), культивировали в присутствии образцов с К Φ -покрытием и (или) ТКА (2 \times 10^6 частиц в 1.5 мл питательной среды в пропорции с клетками 2:1) в течение 2-х и 14 сут. КФ-покрытие и ТКА синергично запускали адаптацию культуры МНК через механизмы гиперактивации и последующей гибели T-лимфоцитов. Иммуноселекция была обусловлена накоплением наивных T-лимфоцитов $CD45RA^+/RO^+$ и T-клеток памяти с одновременным истощением пула Т-клеток CD4⁺ и CD8⁺. Изменение субпопуляций Т-лимфоцитов сопровождалось усилением (через 48 ч культивирования) секреторной активности клеток с последующим ее снижением к 14 суткам наблюдения. КФ-покрытие поддерживало (в сравнении с культурой клеток на пластике) секреторную способность лимфоцитов Th1 (IL-12, TNF α , IFN γ) и Th2 (IL-4, IL-6, IL-10, IL-13). В то же время, длительный сигнал ТКА после 48-часовой активации приводил к истощению секреции Т-клетками. Обсуждается предположение, что обнаруженные in vitro эффекты могут иметь значение в переключении сигналинга между Т-лимфоцитами, АПК и КФ-материалами на границе раздела клетка-инородное тело, исходом которого может быть смена фаз воспаления (регенерация), развитие иммунной толерантности, успешная остеоинтеграция имплантата или нарушение ремоделирования костной ткани.

Ключевые слова: мононуклеарные лейкоциты крови человека, краткосрочная и длительная культура, жизнеспособность, иммунофенотип, цитокины, анти-CD2CD3CD28 частицы, микродуговое кальцийфосфатное покрытие

DOI: 10.31857/S0041377120080039

Иммунокомпетентные клетки крови принимают непосредственное участие в процессах воспаления, ангио- и остеогенеза (Loi et al., 2016; Schell et al., 2017). Эти процессы, в конечном итоге, приводят к регенерации (ремоделированию) костной ткани, приживлению имплантата или, при неблагоприят-

ном сценарии, к его отторжению вследствие остеолизиса. В отличие от продуктивного воспаления, протекающего в различных внутренних органах и завершающегося во взрослом организме, как правило, формированием рубца, гранулематозное воспаление в условиях физиологической или репаративной (по-