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To establish the mechanisms of transformed cells resistance to the histone deacetylase inhibitors (HDACi), we com-
pared the changes of the main proliferative signaling cascades activities in cells that are sensitive or resistant to HDA-
Ci-induced apoptosis. The time-dependent dynamics of the ERK kinase activity was shown. Phosphorylation of
ERK kinase increased in the first 24 hours of the HDACi sodium butyrate treatment, followed by ERK activity de-
crease in resistant cells. Whereas in apoptotic cells, an inverse time-dependent dynamics of ERK activity changes
was observed. It has been shown that resistance to HDACi can be overcome by inhibiting the MEK/ERK pathway.
The resistant cells underwent to apoptotic death after 48 hours of combined treatment with sodium butyrate and the
MEK/ERK pathway inhibitor PD098059. The study of the Wnt/β-catenin signaling cascade showed that the accu-
mulation and transcriptional activation of β-catenin occurs only in cells resistant to HDACi-induced apoptosis.
Thus, the obtained results indicate that a change in the activity of β-catenin is one of the reasons for the resistance
to apoptosis induced by HDACi sodium butyrate, and the increased activity of the PI3K/Akt and MEK/ERK kinase
pathways is a prerequisite for the most effective antiproliferative effect of HDACi.
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