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Artificial moderate hypothermia is widely used in clinical practice to protect organs from the effects of isch-
emia/reperfusion, injury and hypoxia. However, a decrease in the body temperature of homoiothermal animals in-
duces oxidative stress, the severity of which may depend on the time of exposure to the “cold” factor. Since mito-
chondria play a key role in the generation of ROS, we studied the dependence of the intensity of FRP in mitochon-
dria of the liver of rats on the duration of moderate (30°C) hypothermia. It turned out that short-term (30 min)
hypothermia activates the processes of LP, while the concentration of lipid hydroperoxides, SchB and MDA signifi-
cantly increases. Prolonging hypothermia to 1 hour reduces the content of many LP products, and at 3-hour hypo-
thermia their normalization is observed. Short-term hypothermia and its prolongation to 1 hour is accompanied by
oxidative destruction of mitochondrial proteins, which is reflected in a decrease in the content of sulfhydryl groups
in them and an increase of carbonyl groups. At the same time, 3-hour hypothermia contributes to the normalization
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of the studied OMP markers. The dynamics of changes in the levels of sulfhydryl and carbonyl groups in mitochon-
drial matrix proteins is more pronounced in comparison with membrane proteins. The study of the spectral charac-
teristics of membrane proteins of mitochondria showed a decrease in the intensity of their f luorescence in the initial
stages of hypothermia. The main contribution to it is made by tryptophan residues localized at the periphery. The
prolongation of hypothermia to 3 hours promote to restore the parameters of f luorescence to the level of control.
The data obtained in the analysis of second derivatives of f luorescence spectra indicate certain changes in spatial
configuration of membrane proteins.
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