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INTENSITY OF FREE-RADICAL PROCESSES IN RAT LIVER MITOCHONDRIA
AT MODERATE HYPOTHERMIA OF VARIOUS DURATION

R. A. Khalilov*, A. M. Dzhafarova® *, S. 1. Khizrieva®, and V. R. Abdullaev*
¢ Department of Biochemistry and Biophysics, Dagestan State University, Dagestan, Makhachkala, 367000 Russia
*e-mail: albina 19764@mail.ru

Artificial moderate hypothermia is widely used in clinical practice to protect organs from the effects of isch-
emia/reperfusion, injury and hypoxia. However, a decrease in the body temperature of homoiothermal animals in-
duces oxidative stress, the severity of which may depend on the time of exposure to the “cold” factor. Since mito-
chondria play a key role in the generation of ROS, we studied the dependence of the intensity of FRP in mitochon-
dria of the liver of rats on the duration of moderate (30°C) hypothermia. It turned out that short-term (30 min)
hypothermia activates the processes of LP, while the concentration of lipid hydroperoxides, SchB and M DA signifi-
cantly increases. Prolonging hypothermia to 1 hour reduces the content of many LP products, and at 3-hour hypo-
thermia their normalization is observed. Short-term hypothermia and its prolongation to 1 hour is accompanied by
oxidative destruction of mitochondrial proteins, which is reflected in a decrease in the content of sulfhydryl groups
in them and an increase of carbonyl groups. At the same time, 3-hour hypothermia contributes to the normalization
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of the studied OMP markers. The dynamics of changes in the levels of sulfhydryl and carbonyl groups in mitochon-
drial matrix proteins is more pronounced in comparison with membrane proteins. The study of the spectral charac-
teristics of membrane proteins of mitochondria showed a decrease in the intensity of their fluorescence in the initial
stages of hypothermia. The main contribution to it is made by tryptophan residues localized at the periphery. The
prolongation of hypothermia to 3 hours promote to restore the parameters of fluorescence to the level of control.
The data obtained in the analysis of second derivatives of fluorescence spectra indicate certain changes in spatial
configuration of membrane proteins.

Keywords: rats, hypothermia, liver, mitochondria, lipid peroxidation, oxidative modification of proteins
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